Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Environ Sci Technol ; 57(1): 486-497, 2023 01 10.
Article in English | MEDLINE | ID: covidwho-2185452

ABSTRACT

Respiratory viruses, including influenza virus and SARS-CoV-2, are transmitted by the airborne route. Air filtration and ventilation mechanically reduce the concentration of airborne viruses and are necessary tools for disease mitigation. However, they ignore the potential impact of the chemical environment surrounding aerosolized viruses, which determines the aerosol pH. Atmospheric aerosol gravitates toward acidic pH, and enveloped viruses are prone to inactivation at strong acidity levels. Yet, the acidity of expiratory aerosol particles and its effect on airborne virus persistence have not been examined. Here, we combine pH-dependent inactivation rates of influenza A virus (IAV) and SARS-CoV-2 with microphysical properties of respiratory fluids using a biophysical aerosol model. We find that particles exhaled into indoor air (with relative humidity ≥ 50%) become mildly acidic (pH ∼ 4), rapidly inactivating IAV within minutes, whereas SARS-CoV-2 requires days. If indoor air is enriched with nonhazardous levels of nitric acid, aerosol pH drops by up to 2 units, decreasing 99%-inactivation times for both viruses in small aerosol particles to below 30 s. Conversely, unintentional removal of volatile acids from indoor air may elevate pH and prolong airborne virus persistence. The overlooked role of aerosol acidity has profound implications for virus transmission and mitigation strategies.


Subject(s)
Air Pollution, Indoor , COVID-19 , Respiratory Aerosols and Droplets , Humans , Hydrogen-Ion Concentration , SARS-CoV-2 , Virus Inactivation , Disease Transmission, Infectious
2.
Toxics ; 10(6)2022 May 25.
Article in English | MEDLINE | ID: covidwho-1903445

ABSTRACT

This work evaluates the aerosol oxidative potential (OP) and its changes from modified air pollution emissions during the COVID-19 lockdown period in 2020, with the intent of elucidating the contribution of aerosol sources and related components to aerosol OP. For this, daily particulate matter (PM) samples at an urban background site were collected and analyzed with a chemical (acellular) assay based on Dithiothreitol (DTT) during the COVID-19 restriction period in Athens (Greece). The obtained time-series of OP, PM2.5, organic matter (OM) and SO42- of the pre-, post- and lockdown periods were also compared to the data of the same time periods during the years 2017-2019. Even though all traffic-related emissions have been significantly reduced during the lockdown period (by 30%), there is no reduction in water-soluble OP, organics and sulfate concentrations of aerosol during 2020. The results reveal that the decrease in traffic was not sufficient to drive any measurable change on OP, suggesting that other sources-such as biomass burning and secondary aerosol from long-range transport, which remained unchanged during the COVID lockdown-are the main contributors to OP in Athens, Greece.

3.
Toxics ; 10(6):280, 2022.
Article in English | MDPI | ID: covidwho-1857591

ABSTRACT

This work evaluates the aerosol oxidative potential (OP) and its changes from modified air pollution emissions during the COVID-19 lockdown period in 2020, with the intent of elucidating the contribution of aerosol sources and related components to aerosol OP. For this, daily particulate matter (PM) samples at an urban background site were collected and analyzed with a chemical (acellular) assay based on Dithiothreitol (DTT) during the COVID-19 restriction period in Athens (Greece). The obtained time-series of OP, PM2.5, organic matter (OM) and SO42−of the pre-, post- and lockdown periods were also compared to the data of the same time periods during the years 2017–2019. Even though all traffic-related emissions have been significantly reduced during the lockdown period (by 30%), there is no reduction in water-soluble OP, organics and sulfate concentrations of aerosol during 2020. The results reveal that the decrease in traffic was not sufficient to drive any measurable change on OP, suggesting that other sources-such as biomass burning and secondary aerosol from long-range transport, which remained unchanged during the COVID lockdown-are the main contributors to OP in Athens, Greece.

SELECTION OF CITATIONS
SEARCH DETAIL